Author:
Cha Mingyu,Zheng Hansi,Talukder Amlan,Barham Clayton,Li Xiaoman,Hu Haiyan
Abstract
AbstractMicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation and phenotype development. Understanding the regulation of miRNA genes is critical to understand gene regulation. One of the challenges to study miRNA gene regulation is the lack of condition-specific annotation of miRNA transcription start sites (TSSs). Unlike protein-coding genes, miRNA TSSs can be tens of thousands of nucleotides away from the precursor miRNAs and they are hard to be detected by conventional RNA-Seq experiments. A number of studies have been attempted to computationally predict miRNA TSSs. However, high-resolution condition-specific miRNA TSS prediction remains a challenging problem. Recently, deep learning models have been successfully applied to various bioinformatics problems but have not been effectively created for condition-specific miRNA TSS prediction. Here we created a two-stream deep learning model called D-miRT for computational prediction of condition-specific miRNA TSSs (http://hulab.ucf.edu/research/projects/DmiRT/). D-miRT is a natural fit for the integration of low-resolution epigenetic features (DNase-Seq and histone modification data) and high-resolution sequence features. Compared with alternative computational models on different sets of training data, D-miRT outperformed all baseline models and demonstrated high accuracy for condition-specific miRNA TSS prediction tasks. Comparing with the most recent approaches on cell-specific miRNA TSS identification using cell lines that were unseen to the model training processes, D-miRT also showed superior performance.
Funder
National Science Foundation
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献