Author:
Hu Yun,Li Yanyan,Yang Xiaoqiong,Li Chunli,Wang Lin,Feng Ji,Chen Shouwen,Li Xihong,Yang Yong
Abstract
AbstractBacterial wilt as a soil-borne disease was caused by Ralstonia solanacearum, and seriously damages the growth of tobacco. Integrated biocontrol method was explored to control bacterial wilt. Nevertheless, the long-term effects of the integrated biocontrol method on soil bacterial community, soil physicochemical properties and the incidence of bacterial wilt are not well understood. In this study, B. amyoliquefaciens ZM9, calcium cyanamide and rice bran were applied to tobacco fields in different ways. The disease index and incidence of tobacco bacterial wilt (TBW), soil physicochemical properties, colonization ability of B. amyoliquefaciens ZM9, and rhizopshere bacterial community were investigated. The results showed that the integrated application of B. amyoliquefaciens ZM9, rice bran and calcium cyanamide had the highest control efficiency of TBW and bacteria community diversity. Additionally, the integrated biocontrol method could improve the colonization ability of B. amyoliquefaciens ZM9. Furthermore, the integrated biocontrol method could effectively suppress TBW by regulating soil physicochemical properties, promoting beneficial bacteria and antagonistic bacteria of rhizopshere soil. This strategy has prospect of overcoming the defects in application of a single antagonistic bacteria and provides new insights to understand how to improve the colonization capacity of antagonistic bacteria and control efficacy for TBW.
Funder
The key technology projects of China National Tobacco Corporation
The key technology projects of Hubei tobacco companies
Publisher
Springer Science and Business Media LLC
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献