Community structure of fungal pathogens causing spikelet rot disease of naked oat from different ecological regions of China

Author:

Liu Longlong,Ma Mingchuan,Liu Zhang,Zhang Lijun,Zhou Jianping

Abstract

AbstractSpikelet rot disease (SRD) is an emerging disease of the grain surface of naked oat in China that affects both grain yield and quality. The typical symptom is discoloration from the black structures of the causal fungi. Here, we investigated the fungal communities on the grain surfaces of cultivar Bayou 13 grown in ten ecological oat-producing regions of China, to identify the main pathogens of naked oat SRD. Our results showed that the growth of Alternaria spp. and Davidiella spp. exhibited a competitive relationship and was mainly affected by the elevations of all 10 ecological regions. The dominant pathogens were Davidiella spp. in Shannan Prefecture in Tibet and Haidong Prefecture in Qinghai Province and Alternaria spp. in the other eight regions. The ratios of black pathogens of interest to all pathogens in Shannan Prefecture and Haidong Prefecture were significantly lower than those of the other eight regions, thus indicating that SRD mainly occurred in regions below 2000 m (elevation). We isolated black fungal pathogens from grain surfaces and deduced that they were Alternaria spp. by sequence comparison. The blackened appearance of the grain surfaces was more evident under spray inoculation with a spore suspension of Alternaria than under the control in greenhouse experiments. The recovered pathogen was the same as the pathogen used for inoculation. We thus concluded that Alternaria alone causes naked oat SRD and mainly infects naked oat in regions below 2000 m, which provides a basis for the recognition and management of SRD of naked oat.

Funder

China Agriculture Research System

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3