Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging

Author:

Lee Yeon-Hee,Won Jong Hyun,Kim Seunghyeon,Auh Q.-Schick,Noh Yung-Kyun

Abstract

AbstractThis study investigated the usefulness of deep learning-based automatic detection of anterior disc displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular joint disorder (TMD). Sagittal MRI images of 2520 TMJs were collected from 861 men and 399 women (average age 37.33 ± 18.83 years). A deep learning algorithm with a convolutional neural network was developed. Data augmentation and the Adam optimizer were applied to reduce the risk of overfitting the deep-learning model. The prediction performances were compared between the models and human experts based on areas under the curve (AUCs). The fine-tuning model showed excellent prediction performance (AUC = 0.8775) and acceptable accuracy (approximately 77%). Comparing the AUC values of the from-scratch (0.8269) and freeze models (0.5858) showed lower performances of the other models compared to the fine-tuning model. In Grad-CAM visualizations, the fine-tuning scheme focused more on the TMJ disc when judging ADD, and the sparsity was higher than that of the from-scratch scheme (84.69% vs. 55.61%, p < 0.05). The three fine-tuned ensemble models using different data augmentation techniques showed a prediction accuracy of 83%. Moreover, the AUC values of ADD were higher when patients with TMD were divided by age (0.8549–0.9275) and sex (male: 0.8483, female: 0.9276). While the accuracy of the ensemble model was higher than that of human experts, the difference was not significant (p = 0.1987–0.0671). Learning from pre-trained weights allowed the fine-tuning model to outperform the from-scratch model. Another benefit of the fine-tuning model for diagnosing ADD of TMJ in Grad-CAM analysis was the deactivation of unwanted gradient values to provide clearer visualizations compared to the from-scratch model. The Grad-CAM visualizations also agreed with the model learned through important features in the joint disc area. The accuracy was further improved by an ensemble of three fine-tuning models using diversified data. The main benefits of this model were the higher specificity compared to human experts, which may be useful for preventing true negative cases, and the maintenance of its prediction accuracy across sexes and ages, suggesting a generalized prediction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3