Statistical modeling for Ree-Eyring nanofluid flow in a conical gap between porous rotating surfaces with entropy generation and Hall Effect

Author:

Rooman Muhammad,Shafiq Anum,Shah Zahir,Vrinceanu Narcisa,Deebani Wejdan,Shutaywi Meshal

Abstract

AbstractThe attention of the current study is on the flow of a non-Newtonian incompressible Cu-Water nanofluid flow. The water is assumed as base fluid, while copper is used as nanoparticles. The Ree-Eyring prototype describes the performance of non-Newtonian nanofluids. There is a conical gap that nanofluid flow fills among the plane disc and the cone's stationary/rotational porous faces. Additionally taken into account are heat, mass transfer, and entropy production. The given mathematical model is unique due to the effects of a vertically applied Hall Effect, Ohmic dissipation, viscous dissipation, and chemical processes. The Ree-Eyring fluid constitutive equations, as well as the cylindrical coordinates, have been interpreted. The model equations for motion, heat, and concentration can be changed in the collection of non-linear ODEs by employing the applicable similarity transform. This method allocates a couple of nonlinear ODEs relating to velocity, temperature, and concentration distributions. The shooting scheme (bvp4c technique) is used to solve these equations numerically. Statistical analysis like probable error, correlation, and regression are exploited. The probable error is estimated to compute the consistency of the calculated correlation features. The theoretical data is analyzed in both graphical and tabular forms. The modeled parameters like, magnetic number, porosity parameter, Eckert number, chemical reaction parameter, Brownian motion parameter, thermophoretic parameter, Schmidt number, Hall recent parameter, radiation parameter, and volume fraction are discussed in details graphically and theoretically. The outcomes indicate that the velocity components are greater for greater values of nanoparticle volume fraction and Weissenberg number, whereas for enormous values of magnetic and porosity parameters, the velocity components fall.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference27 articles.

1. Choi, S. U. S. & Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congr. Expo. 12, 17 (1995).

2. Yu, W., France, D. M., Routbort, J. L. & Choi, S. U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 29(5), 432–460 (2008).

3. Wong, K. F. V., Bon, B. L., Vu, S. & Samedi, S. Study of nanofluid natural convection phenomena in rectangular enclosures. ASME Int Mech. Eng. Congr. Expo. Proc. 6, 3–13 (2008).

4. Shah, S. N. A., Shah, Z., Hussain, M. & Khan, M. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg. Chem. Appl. 2017, 1–12. https://doi.org/10.1155/2017/4101735 (2017).

5. Khan, N. S. et al. Slip flow of eyring-powell nanoliquid film containing graphene nanoparticles. AIP Adv. 8, 115302 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3