Exploring the mechanistic link between SF3B1 mutation and ring sideroblast formation in myelodysplastic syndrome

Author:

Ochi Tetsuro,Fujiwara Tohru,Ono Koya,Suzuki Chie,Nikaido Maika,Inoue Daichi,Kato Hiroki,Onodera Koichi,Ichikawa Satoshi,Fukuhara Noriko,Onishi Yasushi,Yokoyama Hisayuki,Nakamura Yukio,Harigae Hideo

Abstract

AbstractAcquired sideroblastic anemia, characterized by bone marrow ring sideroblasts (RS), is predominantly associated with myelodysplastic syndrome (MDS). Although somatic mutations in splicing factor 3b subunit 1 (SF3B1), which is involved in the RNA splicing machinery, are frequently found in MDS-RS, the detailed mechanism contributing to RS formation is unknown. To explore the mechanism, we established human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells stably expressing SF3B1K700E. SF3B1K700E expressing cells showed higher proportion of RS than the control cells along with erythroid differentiation, indicating the direct contribution of mutant SF3B1 expression in erythroblasts to RS formation. In SF3B1K700E expressing cells, ABCB7 and ALAS2, known causative genes for congenital sideroblastic anemia, were downregulated. Additionally, mis-splicing of ABCB7 was observed in SF3B1K700E expressing cells. ABCB7-knockdown HUDEP-2 cells revealed an increased frequency of RS formation along with erythroid differentiation, demonstrating the direct molecular link between ABCB7 defects and RS formation. ALAS2 protein levels were obviously decreased in ABCB7-knockdown cells, indicating decreased ALAS2 translation owing to impaired Fe–S cluster export by ABCB7 defects. Finally, RNA-seq analysis of MDS clinical samples demonstrated decreased expression of ABCB7 by the SF3B1 mutation. Our findings contribute to the elucidation of the complex mechanisms of RS formation in MDS-RS.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3