A new evaluation model of a water conveyance channel based on Bayesian theory by integrating monitoring and detection information

Author:

Wang Yuan,Wei Zhi-Jian,Ren Jie,Gong Jia-Kun,Feng Di

Abstract

AbstractChannels are commonly used in long-distance water transfer projects, where landslides, collapses, or erosion may occur in its course of operation; thus, safety evaluation is conducted through monitoring and detection in its key and potentially hazardous areas. However, monitoring and detection information cannot comprehensively reflect the prominent problems of the safety state of the channel in terms of time and space. Therefore, studying how to realize the integration of monitoring and detection information is an important task for the safety evaluations of channels. In this paper, a method of integrating monitoring and detection information based on Bayesian theory is presented. The research shows that the fusion method of gathering monitoring and detection information based on Bayesian theory successfully captures the safety state of high-filling channels, and it can quantify and reduce uncertainty compared with fuzzy theory and the GA-BP neural network. By studying the influence of monitoring information on the safety of the channel, it is found that the horizontal displacement has a greater impact on the safety of the channel than the vertical displacement. A comparison of the results of fusing seven different monitoring points shows that the comprehensive utilization of horizontal and vertical displacement can improve the accuracy of the evaluation results. Compared to the safety coefficient calculated by the actual exploration, the error rate of the GA-BP neural network is 42.7%, and the fusion method based on Bayesian theory is 2.9%. The proposed method based on Bayesian theory can better use the detection information to recognize and understand the rock and soil in advance; hence, the evaluation results are more reliable and consistent with the actual engineering state.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3