Understanding noble gas incorporation in mantle minerals: an atomistic study

Author:

Lora Alfredo,Patron Paola,Elena Alin M.,Allan Neil L.,Pinilla Carlos

Abstract

AbstractAb initio calculations in forsterite (Mg$$_2$$ 2 SiO$$_4$$ 4 ) are used to gain insight into the formation of point defects and incorporation of noble gases. We calculate the enthalpies of incorporation both at pre-existing vacancies in symmetrically non-equivalent sites, and at interstitial positions. At high pressure, most structural changes affect the MgO$$_{6}$$ 6 units and the enthalpies of point defects increase, with those involving Mg and Si vacancies increasing more than those involving O sites. At 15 GPa Si vacancies and Mg interstitials have become the predominant intrinsic defects. We use these calculated enthalpies to estimate the total uptake of noble gases into the bulk crystal as a function of temperature and pressure both in the presence and absence of other heterovalent trace elements. For He and Ne our calculated solubilities point to atoms occupying mainly interstitial sites in agreement with previous experimental work. In contrast, Ar most likely substitutes for Mg due to its larger size and the deformation it causes within the crystal. Incorporation energies, as well as atomic distances suggest that the incorporation mainly depend on the size mismatch between host and guest atoms. Polarization effects arising from the polarizability of the noble gas atom or the presence of charged defects are minimal and do not contribute significantly to the uptake. Finally, the discrepancies between our results and recent experiments suggest that there are other incorporation mechanisms such as adsorption at internal and external interfaces, voids and grain boundaries which must play a major role in noble gas storage and solubility.

Funder

Ministerio de Ciencia, Tecnología e Innovación

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3