Transcriptome profiling of pediatric extracranial solid tumors and lymphomas enables rapid low-cost diagnostic classification

Author:

Opoku Kofi B.,Santiago Teresa,Kumar Priya,Roush Sophia M.,Fedoriw Yuri,Tomoka Tamiwe,Leventaki Vasiliki,Furtado Larissa V.,Bhakta Nickhill,Alexander Thomas B.,Wang Jeremy R.ORCID

Abstract

AbstractApproximately 80% of pediatric tumors occur in low- and middle-income countries (LMIC), where diagnostic tools essential for treatment decisions are often unavailable or incomplete. Development of cost-effective molecular diagnostics will help bridge the cancer diagnostic gap and ultimately improve pediatric cancer outcomes in LMIC settings. We investigated the feasibility of using nanopore whole transcriptome sequencing on formalin-fixed paraffin embedded (FFPE)-derived RNA and a composite machine learning model for pediatric solid tumor diagnosis. Transcriptome cDNA sequencing was performed on a heterogenous set of 221 FFPE and 32 fresh frozen pediatric solid tumor and lymphoma specimens on Oxford Nanopore Technologies’ sequencing platforms. A composite machine learning model was then used to classify transcriptional profiles into clinically actionable tumor types and subtypes. In total, 95.6% and 89.7% of pediatric solid tumors and lymphoma specimens were correctly classified, respectively. 71.5% of pediatric solid tumors had prediction probabilities > 0.8 and were classified with 100% accuracy. Similarly, for lymphomas, 72.4% of samples that had prediction probabilities > 0.6 were classified with 97.6% accuracy. Additionally, FOXO1 fusion status was predicted accurately for 97.4% of rhabdomyosarcomas and MYCN amplification was predicted with 88% accuracy in neuroblastoma. Whole transcriptome sequencing from FFPE-derived pediatric solid tumor and lymphoma samples has the potential to provide clinical classification of both tissue lineage and core genomic classification. Further expansion, refinement, and validation of this approach is necessary to explore whether this technology could be part of the solution of addressing the diagnostic limitations in LMIC.

Funder

U.S. Department of Health and Human Services | NIH | National Cancer Institute

U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

University Cancer Research Fund, Carolina for the Kids Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3