Author:
Abdel-Hady E. E.,Hafez Sarah H. M.,Mohamed Hamdy F. M.,Elsharkawy Mohamed R. M.
Abstract
AbstractWith a rapid increase in industrial growth around the world, the demand for an entirely novel category of nanoparticles and technologies for wastewater treatment has become a key concern for environmental protection. Recently, hybrids of layered double hydroxides (LDH), particularly those containing LDH, have gained attention as potential nanoscale adsorbents for water treatment. Recent research has shown that LDH-containing composites are interesting versatile materials with the ability to be used in energy storage, photocatalysis, nanocomposites, and water treatment. In the current work, LDH-containing composites were utilized as adsorbents for the purpose of purifying water. The adsorbents investigated are Zn–Co–Fe/LDH/Chitosan-in situ sample preparation (LDH/CS1) and Zn–Co–Fe/LDH/Chitosan-ex situ sample preparation (LDH/CS2). Furthermore, LDH/CS1 and LDH/CS2 were investigated for wastewater treatment from methyl orange dye (MO) with various adsorption conditions. When the initial MO concentration was 20 mg/L and the amount of adsorbent was 0.1 g, the removal efficiency reached 72.8 and 91.7% for LDH/CS1 and LDH/CS2, respectively. The MO’s maximum adsorption capabilities are 160.78 and 165.89 mg/g for LDH/CS1 and LDH/CS2, respectively, which is much greater than that of comparable commercial adsorbents. MO adsorption onto LDH/CS1 and LDH/CS2 was best characterized by the pseudo-second-order kinetic model. The equilibrium adsorption data was followed by the Freundlich and Langmuir models. The adsorption is favorable as evidenced by the equilibrium parameter RL values for MO adsorption onto LDH/CS1 and LDH/CS2, which were 0.227 and 0.144, respectively. Using the free volume distribution method and the positron annihilation lifetime technique, the nanostructure of the materials was examined.
Publisher
Springer Science and Business Media LLC
Reference91 articles.
1. Islam, T., Repon, M. R., Islam, T., Sarwar, Z. & Rahman, M. M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. 30, 9207–9242 (2023).
2. Sadiq, A. C., Rahim, N. Y. & Suah, F. B. M. Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int. J. Biol. Macromol. 164, 3965–3973 (2020).
3. Mohadi, R., Siregar, P. M. S. B. N., Palapa, N. R. & Lesbani, A. Preparation of Zn/Al-chitosan composite for the selective adsorption of methylene blue dye in water. Makara J. Sci. 26, 7 (2022).
4. Hanafi, M. F. & Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 31, A141–A150 (2020).
5. Liu, M. et al. High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Sep. Purif. Technol. 173, 135–143 (2017).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献