Insights into modeling refractive index of ionic liquids using chemical structure-based machine learning methods

Author:

Esmaeili Ali,Hekmatmehr Hesamedin,Atashrouz Saeid,Madani Seyed Ali,Pourmahdi Maryam,Nedeljkovic Dragutin,Hemmati-Sarapardeh Abdolhossein,Mohaddespour Ahmad

Abstract

AbstractIonic liquids (ILs) have drawn much attention due to their extensive applications and environment-friendly nature. Refractive index prediction is valuable for ILs quality control and property characterization. This paper aims to predict refractive indices of pure ILs and identify factors influencing refractive index changes. Six chemical structure-based machine learning models called eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), Convolutional Neural Network (CNN), Adaptive Boosting-Decision Tree (Ada-DT), and Adaptive Boosting-Support Vector Machine (Ada-SVM) were developed to achieve this goal. An enormous dataset containing 6098 data points of 483 different ILs was exploited to train the machine learning models. Each data point’s chemical substructures, temperature, and wavelength were considered for the models’ inputs. Including wavelength as input is unprecedented among predictions done by machine learning methods. The results show that the best model was CatBoost, followed by XGBoost, LightGBM, Ada-DT, CNN, and Ada-SVM. The R2 and average absolute percent relative error (AAPRE) of the best model were 0.9973 and 0.0545, respectively. Comparing this study’s models with the literature shows two advantages regarding the dataset’s abundance and prediction accuracy. This study also reveals that the presence of the –F substructure in an ionic liquid has the most influence on its refractive index among all inputs. It was also found that the refractive index of imidazolium-based ILs increases with increasing alkyl chain length. In conclusion, chemical structure-based machine learning methods provide promising insights into predicting the refractive index of ILs in terms of accuracy and comprehensiveness.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3