A Novel Relative Permeability Model for Gas and Water Flow in Hydrate-Bearing Sediments With Laboratory and Field-Scale Application

Author:

Singh HarpreetORCID,Myshakin Evgeniy M.,Seol Yongkoo

Abstract

AbstractIn a producing gas hydrate reservoir the effective porosity available for fluid flow constantly changes with dissociation of gas hydrate. Therefore, accurate prediction of relative permeability using legacy models (e.g. Brooks-Corey (B-C), van Genuchten, etc.) that were developed for conventional oil and gas reservoirs would require empirical parameters to be calibrated at various Sh over its range of variation, but such calibrations are precluded because of lack of experimental relative permeability data. This study proposes a new relative permeability model for gas hydrate-bearing media that is a function of maximum capillary pressure, capillary entry pressure, pore size distribution index, residual saturations, hydrate saturation, and four other constants. The three novel features of the proposed model are: (i) requires fitting its six empirical parameters only once using experimental data from any single Sh, and the same set of empirical parameters predict relative permeability at all Sh, (ii) includes the effect of capillarity, and (iii) includes the effect of pore-size distribution. From practical standpoint, the model can be used to simulate multiphase flow in gas hydrate-bearing sediments where the proposed relative permeability can account for the evolving hydrate saturation. The proposed model is implemented in a numerical simulator and the wall time required to perform simulations using the proposed model is shown to be similar to the time it takes to run same simulations with the B-C model. The proposed model is a step forward towards achieving the goal of physically accurate modeling of multiphase flow for gas hydrate-bearing sediments that accounts for the effect of gas hydrate saturation change on relative permeability.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3