High ellipticity reduces semi-circular canal sensitivity in squamates compared to mammals

Author:

Goyens Jana

Abstract

Abstract The semi-circular canals in the inner ear sense head rotations. It is widely recognised that the anatomy of the semi-circular canals is often adapted to the species-specific agility, in order to provide the necessary sensitivity. Based on research on mammals, the ellipticity of the semi-circular canal was so far considered as a non-important factor herein. A dataset of 125 squamate species and 156 mammalian species, now shows that the posterior semi-circular canal of squamates is much more elliptical (eccentricities ranging between 0.76 and 0.94) than that of mammals (eccentricities ranging between 0 and 0.71). Fluid-Structure Interaction computer models show that the effect of the ellipticity on sensitivity is strongest in small semi-circular canals. This new insight indicates that the high ellipticity in squamates leads to a severe reduction in sensitivity of up to 45%. In mammals, on the other hand, the reduction in sensitivity is limited to 13%, which is consistent with previous literature that found a limited effect of semi-circular canal ellipticity in mammals. Further, there is a strongly negative correlation between semi-circular canal size and eccentricity in squamates, which is absent in mammals. Hence, the smallest squamates have the most elliptical semi-circular canals. In general, the smaller the semi-circular canal, the less sensitive it is. Therefore, the highly elliptical squamate canals are probably the result of fitting the largest possible canal in small and flat head. Miniaturising the canals while maintaining a circular shape would reduce the sensitivity by another 73% compared to the highly elliptical canals.

Funder

Fonds Wetenschappelijk Onderzoek, Belgium

Herculesstichting

Elettra-Sincrotrone Trieste

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3