Kendall transformation brings a robust categorical representation of ordinal data

Author:

Kursa Miron Bartosz

Abstract

AbstractKendall transformation is a conversion of an ordered feature into a vector of pairwise order relations between individual values. This way, it preserves ranking of observations and represents it in a categorical form. Such transformation allows for generalisation of methods requiring strictly categorical input, especially in the limit of small number of observations, when quantisation becomes problematic. In particular, many approaches of information theory can be directly applied to Kendall-transformed continuous data without relying on differential entropy or any additional parameters. Moreover, by filtering information to this contained in ranking, Kendall transformation leads to a better robustness at a reasonable cost of dropping sophisticated interactions which are anyhow unlikely to be correctly estimated. In bivariate analysis, Kendall transformation can be related to popular non-parametric methods, showing the soundness of the approach. The paper also demonstrates its efficiency in multivariate problems, as well as provides an example analysis of a real-world data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference28 articles.

1. Shannon, C. E. A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948).

2. Smith, R. A mutual information approach to calculating nonlinearity. Stat 4, 291–303 (2015).

3. Brown, G., Pocock, A., Zhao, M.-J. & Lujan, M. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27–66 (2012).

4. Margolin, A. A. et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, 1–15 (2006).

5. Brown, P. F., De Souza, P. V., Mercer, R. L., Pietra, V. J. D. & Lai, J. C. Class-based n-gram models of natural language. Comput. Linguist. 18, 467–479 (1992).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3