Evaluation of ionic liquids based imidazolium salts as an environmentally friendly corrosion inhibitors for carbon steel in HCl solutions

Author:

El-Nagar Raghda A.,Khalil N. A.,Atef Y.,Nessim Maher I.,Ghanem Alaa

Abstract

AbstractThe features of this work on corrosion inhibition have been investigated based on the ecological awareness and according to the strict environmental legislations. This was done by studying how different imidazolium derivatives ionic liquids containing different alkyl chains R8, R10 and R12 affected the corrosion reaction of carbon steel specimen immersed in 1 M hydrochloric acid at various temperatures. Weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy were utilized to examine the corrosion inhibition behavior on carbon steel. In addition, FT-IR spectroscopy was used to analyze the coated film that has been formed on the metal surface. The prepared ionic liquids showed effective inhibition efficiency, where the corrosion rate after the using of 100 ppm of R8-IL, R10-IL and R12-IL was decreased from 5.95 (µg cm−2 min−1) to 0.66, 0.56, and 0.44 (µg cm−2 min−1), respectively at 20 °C. In the polarization curves, the corrosion current, Icorr, decreases by ILs addition and suggest that ILs act as mixed type inhibitors. From EIS findings, the increase in Rct and decrease in Cdl values proves the adherence of inhibitor molecules on carbon steel surface. The temperature effect was also studied on the film formed, where increasing the temperature from 20 to 50 °C, the corrosion rate increased and the inhibitors efficacy decreased. The increasing in the length of the attached alkyl chain, the efficacies of the prepared inhibitors increases. Various thermodynamic parameters such as the reaction activation free energy (ΔG*), the entropy of activation (ΔS*), and the enthalpy of activation (ΔH*), as well as the adsorption isotherm were investigated in order to interpret the mechanism and obtain the most accurate perception.

Funder

Egyptian Petroleum Research Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3