Investigating the impact of emotion on temporal orientation in a deep multitask setting

Author:

Kamila Sabyasachi,Hasanuzzaman Mohammad,Ekbal Asif,Bhattacharyya Pushpak

Abstract

AbstractTemporal orientation is an important aspect of human cognition which shows how an individual emphasizes past, present, and future. Theoretical research in psychology shows that one’s emotional state can influence his/her temporal orientation. We hypothesize that measuring human temporal orientation can benefit from concurrent learning of emotion. To test this hypothesis, we propose a deep learning-based multi-task framework where we concurrently learn a unified model for temporal orientation (our primary task) and emotion analysis (secondary task) using tweets. Our multi-task framework takes users’ tweets as input and produces three temporal orientation labels (past, present or future) and four emotion labels (joy, sadness, anger, or fear) with intensity values as outputs. The classified tweets are then grouped for each user to obtain the user-level temporal orientation and emotion. Finally, we investigate the associations between the users’ temporal orientation and their emotional state. Our analysis reveals that joy and anger are correlated to future orientation while sadness and fear are correlated to the past orientation.

Funder

Horizon 2020 project STOP Obesity Platform

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference73 articles.

1. Marquardt, J. et al. Age and gender identification in social media. in Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15–18, 2014. 1129–1136 (2014).

2. Sap, M. et al. Developing age and gender predictive lexica over social media. in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP. 1146–1151 (2014).

3. Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A. & Danforth, C. M. Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. PloS one 6, 1–26 (2011).

4. Choudhury, M. D., Counts, S. & Horvitz, E. Predicting postpartum changes in emotion and behavior via social media. in 2013 ACM SIGCHI Conference on Human Factors in Computing Systems. 3267–3276 (2013).

5. Kosinski, M., Stillwell, D. & Graepel, T. Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. 110, 5802–5805 (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3