Multifunctional coil technique for alignment-agnostic and Rx coil size-insensitive efficiency enhancement for wireless power transfer applications

Author:

Yoon Seoyeon,Lim Taejun,Lee Yongshik

Abstract

AbstractThis paper presents a multifunctional coil technique to enhance the transfer efficiency of an inductively-coupled wireless power transfer (WPT) system, regardless of the alignment condition and size ratio between the transmitter (Tx) and receiver (Rx) coils. The technique incorporates an auxiliary coil on the Tx side, where current is induced through coupling from the primary coil. Since the Tx coil consists of two coils, transmission to the Rx occurs through the coil with the higher coupling coefficient, determined by the misalignment state. Additionally, by controlling this current using a varactor placed on the auxiliary coil, an optimal magnetic flux is generated based on the alignment condition and/or the size of the Rx coil. In perfect alignment, the auxiliary coil focuses the flux from the Tx to the Rx coil, maximizing transfer efficiency. In misalignment scenarios, the current on the auxiliary coil is adjusted to shift the effective center of the Tx coil, achieving the strongest alignment of the magnetic flux traversing the Rx coil. This adjustment, which can be controlled adaptively based not only on the degree of misalignment but also on the size of the Rx coil, enables virtually null-free operation across varying misalignment conditions and for different Rx sizes. Furthermore, as this multifunctionality of the proposed system is achieved with a minimal number of additional components-just a single auxiliary coil and a single varactor-the impact on the overall quality factor (Q) of the system is minimized, contributing to the higher efficiency. In a size-symmetric system, where the Tx and Rx coils have the same size, the efficiency reaches 98.1% in perfect alignment and remains above 60% with up to 135% misalignment relative to the largest coil dimension. In a size-asymmetric system, with the Rx coil reduced to a quarter of the Tx coil, the efficiency is 96.1% in perfect alignment and remains above 60% up to 95% misalignment. Despite its enhanced practicality through a simple structure featuring only one auxiliary coil and an asymmetric configuration integrated solely on the Tx side, the proposed technique surpasses previous methods by delivering significantly superior performance. Moreover, it demonstrates unprecedented tolerance to both misalignment and smaller Rx coil sizes, which is frequently encountered in practical applications.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3