Detailed numerical evaluation of diffusion convection equation in layered reservoirs during tracer injection

Author:

Moayyedi Mahmood,Sharifi Mohammad,Abbasi Mahdi,Shabani Mahdi

Abstract

AbstractCharacterization of heterogeneous reservoirs such as multilayered or fractured systems is an important issue in different disciplines such as hydrology, petroleum and geothermal systems. One of the popular methods that can be used for this purpose is tracer tests. Better understanding of the mechanisms of mass transfer (convection–diffusion process) is essential for having a proper test interpretation. In this study, the solutions of different scenarios of tracer flow in a pair of high and low-permeable layered reservoirs including convection and diffusion mechanisms are discussed. Although analytical solutions generally provided exact solutions, they involve several assumptions and might be hard to use for complex problems. As a result, numerical methods are selected for the investigation of different scenarios and addressing cases that are beyond access of analytical methods. In this study, several scenarios of considering diffusion and convection in low and high permeable zones and effective parameters on tracer concentration are investigated. According to the results of this study, the higher the porosity ratio of low to high permeable layer, the more time is needed to get the final concentration value. Also, by increasing the value of the dispersivity coefficient, the time needed to increase the concentration decreases. In other words, the sharp increase in concentration for lower times is seen in higher dispersivity values. The concentration profile variation is affected by Peclet number. The difference among concentration profiles in different cases is considerable, especially in low Peclet numbers where the diffusion mechanism is dominant. This behavior is more common in low permeable mediums such as multilayered tight or shale reservoirs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3