Author:
Lim Jong-Sup,Oh Won-Jung,Lee Choon-Man,Kim Dong-Hyeon
Abstract
AbstractIn the directed energy deposition (DED) process, significant empirical testing is required to select the optimal process parameters. In this study, single-track experiments were conducted using laser power and scan speed as parameters in the DED process for titanium alloys. The results of the experiment confirmed that the deposited surface color appeared differently depending on the process parameters. Cross-sectional view, hardness, microstructure, and component analyses were performed according to the color data, and a color suitable for additive manufacturing was selected. Random forest (RF) and support vector machine multi-classification models were constructed by collecting surface color data from a titanium alloy deposited on a single track; the accuracies of the multi-classification models were compared. Validation experiments were performed under conditions that each model predicted differently. According to the results of the validation experiments, the RF multi-classification model was the most accurate.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献