Study on the optimal position of the roof low roadway based on the response surface methodology

Author:

Zhu Hongqing,Fang Shuhao,Huo Yujia,Liao Qi,Hu Lintao,Zhang Yilong,Li Feng

Abstract

AbstractFor determine the optimum position of the roof low roadway, the optimal solution is derived according to the response surface methodology. The UDEC numerical simulation of the overburden gives the porosity distribution of the strike fractured zone, the upper limit heights of the caving zone and the fractured zone are obtained as 18 m and 65 m, respectively. Based on the porosity distribution, the FLUENT numerical models of the goaf zone, air inlet roadway, air return roadway, working face and roof low roadway were established to simulate the gas concentration in the upper corner and gas drainage volume in roof low roadway during mining. Using the vertical and horizontal distance of the roof low roadway as the influencing factors, the experimental scheme of the position of the roof low roadway was designed according to the response surface method, and the response values were obtained from the FLUENT simulation experiments, predicting that the vertical and horizontal distances of the roof low roadway were 7.7 m and 5.9 m respectively when the interaction between the gas concentration in the upper corner and gas drainage volume in roof low roadway was optimal. Field tests showed that the average gas concentration in the upper corner and the average gas drainage volume in roof low roadway were 0.432% and 40.861 m3/min respectively, both of which were less than 10% of the error from the simulations. The design of the roof low roadway has effectively managed the gas accumulation problem in the upper corner.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3