Road damage detection algorithm for improved YOLOv5

Author:

Guo Gege,Zhang Zhenyu

Abstract

AbstractRoad damage detection is an important task to ensure road safety and realize the timely repair of road damage. The previous manual detection methods are low in efficiency and high in cost. To solve this problem, an improved YOLOv5 road damage detection algorithm, MN-YOLOv5, was proposed. We optimized the YOLOv5s model and chose a new backbone feature extraction network MobileNetV3 to replace the basic network of YOLOv5, which greatly reduced the number of parameters and GFLOPs of the model, and reduced the size of the model. At the same time, the coordinate attention lightweight attention module is introduced to help the network locate the target more accurately and improve the target detection accuracy. The KMeans clustering algorithm is used to filter the prior frame to make it more suitable for the dataset and to improve the detection accuracy. To improve the generalization ability of the model, a label smoothing algorithm is introduced. In addition, the structure reparameterization method is used to accelerate model reasoning. The experimental results show that the improved YOLOv5 model proposed in this paper can effectively identify pavement cracks. Compared with the original model, the mAP increased by 2.5%, the F1 score increased by 2.6%, and the model volume was smaller than that of YOLOv5. 1.62 times, the parameter was reduced by 1.66 times, and the GFLOPs were reduced by 1.69 times. This method can provide a reference for the automatic detection method of pavement cracks.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference25 articles.

1. Arya, D. et al. Deep learning-based road damage detection and classification for multiple countries. Autom. Constr. 132, 103935 (2021).

2. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, 1440–1448 (2015).

3. Dai, J., et al. R-fcn: Object detection via region-based fully convolutional networks. In Advances in Neural Information Processing Systems, 379–387 (2016).

4. He, K., et al. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, 2961–2969 (2017).

5. Redmon, J. & Farhadi, A. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3