Author:
Maruta Jumpei,Uchida Kentaro,Kurozumi Hideo,Nogi Satoshi,Akada Satoshi,Nakanishi Aki,Shinoda Miki,Shiba Masatsugu,Inoue Koki
Abstract
AbstractThis study aims to investigate the accuracy of a fine-tuned deep convolutional neural network (CNN) for evaluating responses to the pentagon copying test (PCT). To develop a CNN that could classify PCT images, we fine-tuned and compared the pre-trained CNNs (GoogLeNet, VGG-16, ResNet-50, Inception-v3). To collate our training dataset, we collected 1006 correct PCT images and 758 incorrect PCT images drawn on a test sheet by dementia suspected patients at the Osaka City Kosaiin Hospital between April 2009 and December 2012. For a validation dataset, we collected PCT images from consecutive patients treated at the facility in April 2020. We examined the ability of the CNN to detect correct PCT images using a validation dataset. For a validation dataset, we collected PCT images (correct, 41; incorrect, 16) from 57 patients. In the validation testing for an ability to detect correct PCT images, the fine-tuned GoogLeNet CNN achieved an area under the receiver operating characteristic curve of 0.931 (95% confidence interval 0.853–1.000). These findings indicate that our fine-tuned CNN is a useful method for automatically evaluating PCT images. The use of CNN-based automatic scoring of PCT can potentially reduce the burden on assessors in screening for dementia.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献