Mechanical and gas adsorption properties of graphene and graphynes under biaxial strain

Author:

de Oliveira Raphael B.,Borges Daiane Damasceno,Machado Leonardo D.

Abstract

AbstractThe exceptional properties of two-dimensional (2D) solids have motivated extensive research, which revealed the possibility of controlling many characteristics of these materials through strain. For instance, previous investigations demonstrated that compressive deformation could be used to direct the chemisorption of atomic hydrogen and oxygen. Still, to our knowledge, there is no work detailing how strain affects the adsorption isotherms of 2D materials and the adsorption properties of materials such as the graphynes, which are monolayers composed of sp and sp$$^2$$ 2 carbon atoms. In the present work, we analyze how biaxial tensile deformation changes the adsorption properties of four 2D materials (graphene, $$\alpha $$ α -graphyne, $$\beta $$ β -graphyne, and $$\gamma $$ γ -graphyne). To achieve this, we perform Monte Carlo Grand Canonical calculations to obtain the adsorption isotherms of H$$_2$$ 2 , CO$$_2$$ 2 , and CH$$_4$$ 4 on the monolayers with and without strain. And, to apply the deformation, we carry out Molecular Dynamics simulations. We find a substantial reduction in the amount of gas adsorbed on the monolayers for nearly all gas–solid combinations. This is particularly true for graphene, where 14.5% strain reduces the quantity of H$$_2$$ 2 /CO$$_2$$ 2 /CH$$_4$$ 4 by 44.7/64.1/41.7% at P $$=$$ = 1 atm. To understand the results, we calculate adsorption enthalpies and analyze the gas distribution above the monolayers. We also characterize the mechanical properties of the considered solids under biaxial deformation. Finally, a comparison of pore sizes with the kinetic diameters of various gases suggests applications for the graphynes, with and without strain, in gas separation.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3