Prediction of protein secondary structure by the improved TCN-BiLSTM-MHA model with knowledge distillation

Author:

Zhao Lufei,Li Jingyi,Zhan Weiqiang,Jiang Xuchu,Zhang Biao

Abstract

AbstractSecondary structure prediction is a key step in understanding protein function and biological properties and is highly important in the fields of new drug development, disease treatment, bioengineering, etc. Accurately predicting the secondary structure of proteins helps to reveal how proteins are folded and how they function in cells. The application of deep learning models in protein structure prediction is particularly important because of their ability to process complex sequence information and extract meaningful patterns and features, thus significantly improving the accuracy and efficiency of prediction. In this study, a combined model integrating an improved temporal convolutional network (TCN), bidirectional long short-term memory (BiLSTM), and a multi-head attention (MHA) mechanism is proposed to enhance the accuracy of protein prediction in both eight-state and three-state structures. One-hot encoding features and word vector representations of physicochemical properties are incorporated. A significant emphasis is placed on knowledge distillation techniques utilizing the ProtT5 pretrained model, leading to performance improvements. The improved TCN, achieved through multiscale fusion and bidirectional operations, allows for better extraction of amino acid sequence features than traditional TCN models. The model demonstrated excellent prediction performance on multiple datasets. For the TS115, CB513 and PDB (2018–2020) datasets, the prediction accuracy of the eight-state structure of the six datasets in this paper reached 88.2%, 84.9%, and 95.3%, respectively, and the prediction accuracy of the three-state structure reached 91.3%, 90.3%, and 96.8%, respectively. This study not only improves the accuracy of protein secondary structure prediction but also provides an important tool for understanding protein structure and function, which is particularly applicable to resource-constrained contexts and provides a valuable tool for understanding protein structure and function.

Funder

Guangyue Young Scholar Innovation Team of Liaocheng University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3