Ionic liquid pretreatment of stinging nettle stems and giant miscanthus for bioethanol production

Author:

Smuga-Kogut MałgorzataORCID,Szymanowska-Powałowska DariaORCID,Markiewicz RoksanaORCID,Piskier TomaszORCID,Kogut TomaszORCID

Abstract

AbstractProduction of ethanol from lignocellulosic biomass is considered the most promising proposition for developing a sustainable and carbon–neutral energy system. The use of renewable raw materials and variability of lignocellulosic feedstock generating hexose and pentose sugars also brings advantages of the most abundant, sustainable and non-food competitive biomass. Great attention is now paid to agricultural wastes and overgrowing plants as an alternative to fast-growing energetic crops. The presented study explores the use of stinging nettle stems, which have not been treated as a source of bioethanol. Apart from being considered a weed, stinging nettle is used in pharmacy or cosmetics, yet its stems are always a non-edible waste. Therefore, the aim was to evaluate the effectiveness of pretreatment using imidazolium- and ammonium-based ionic liquids, enzymatic hydrolysis, fermentation of stinging nettle stems, and comparison of such a process with giant miscanthus. Raw and ionic liquid-pretreated feedstocks of stinging nettle and miscanthus were subjected to compositional analysis and scanning electron microscopy to determine the pretreatment effect. Next, the same conditions of enzymatic hydrolysis and fermentation were applied to both crops to explore the stinging nettle stems potential in the area of bioethanol production. The study showed that the pretreatment of both stinging nettle and miscanthus with imidazolium acetates allowed for increased availability of the critical lignocellulosic fraction. The use of 1-butyl-3-methylimidazolium acetate in the pretreatment of stinging nettle allowed to obtain very high ethanol concentrations of 7.3 g L−1, with 7.0 g L−1 achieved for miscanthus. Results similar for both plants were obtained for 1-ethyl-3-buthylimidazolium acetate. Moreover, in the case of ammonium ionic liquids, even though they have comparable potential to dissolve cellulose, it was impossible to depolymerize lignocellulose and extract lignin. Furthermore, they did not improve the efficiency of the hydrolysis process, which in turn led to low alcohol concentration. Overall, from the presented results, it can be assumed that the stinging nettle stems are a very promising bioenergy crop.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3