The polyketide synthase PKS15 has a crucial role in cell wall formation in Beauveria bassiana

Author:

Udompaisarn Somsiri,Toopaang Wachiraporn,Sae-Ueng UdomORCID,Srisuksam Chettida,Wichienchote Nuchnudda,Wasuwan Rudsamee,Nahar Nur Amalina Shamsun,Tanticharoen Morakot,Amnuaykanjanasin Alongkorn

Abstract

AbstractEntomopathogenic fungi utilize specific secondary metabolites to defend against insect immunity, thereby enabling colonization of their specific hosts. We are particularly interested in the polyketide synthesis gene pks15, which is involved in metabolite production, and its role in fungal virulence. Targeted disruption of pks15 followed by genetic complementation with a functional copy of the gene would allow for functional characterization of this secondary metabolite biosynthesis gene. Using a Beauveria bassianapks15 mutant previously disrupted by a bialophos-resistance (bar) cassette, we report here an in-cis complementation at bar cassette using CRISPR/Cas9 gene editing. A bar-specific short guide RNA was used to target and cause a double-strand break in bar, and a donor DNA carrying a wild-type copy of pks15 was co-transformed with the guide RNA. Isolate G6 of ∆pks15 complemented with pks15 was obtained and verified by PCR, Southern analyses and DNA sequencing. Compared to ∆pks15 which showed a marked reduction in sporulation and insect virulence, the complementation in G6 restored with insect virulence, sporulation and conidial germination to wild-type levels. Atomic force and scanning electron microscopy revealed that G6 and wild-type conidial wall surfaces possessed the characteristic rodlet bundles and rough surface while ∆pks15 walls lacked the bundles and were relatively smoother. Conidia of ∆pks15 were larger and more elongated than that of G6 and the wild type, indicating changes in their cell wall organization. Our data indicate that PKS15 and its metabolite are likely not only important for fungal virulence and asexual reproduction, but also cell wall formation.

Funder

National Center for Genetic Engineering and Biotechnology

Academia Sinica

Thailand Science Park

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3