An approach to cellular tropism of SARS-CoV-2 through protein–protein interaction and enrichment analysis

Author:

Ortega-Bernal Daniel,Zarate Selene,Martinez-Cárdenas Maria de los Ángeles,Bojalil Rafael

Abstract

AbstractCOVID-19, caused by SARS-CoV-2, is a primarily pulmonary disease that can affect several organs, directly or indirectly. To date, there are many questions about the different pathological mechanisms. Here, we generate an approach to identify the cellular-level tropism of SARS-CoV-2 using human proteomics, virus-host interactions, and enrichment analysis. Through a network-based approach, the molecular context was visualized and analyzed. This procedure was also performed for SARS-CoV-1. We obtained proteomes and interactomes from 145 different cells corresponding to 57 different tissues. We discarded the cells without the proteins known for interacting with the virus, such as ACE2 or TMPRSS2. Of the remaining cells, a gradient of susceptibility to infection was observed. In addition, we identified proteins associated with the coagulation cascade that can be directly or indirectly affected by viral proteins. As a whole we identified 55 cells that could be potentially controlled by the virus, with different susceptibilities, mainly being pneumocytes, heart, kidney, liver, or small intestine cells. These results help to explain the molecular context and provide elements for possible treatments in the current situation. This strategy may be useful for other viruses, especially those with limited reported PPI, such as a new virus.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3