Advancing state estimation for lithium-ion batteries with hysteresis through systematic extended Kalman filter tuning

Author:

Knox J.ORCID,Blyth M.ORCID,Hales A.ORCID

Abstract

AbstractKnowledge of remaining battery charge is fundamental to electric vehicle deployment. Accurate measurements of state-of-charge (SOC) cannot be obtained directly and estimation methods must be used instead. This requires both a good model of a battery and a well-designed state estimator. Here, hysteretic reduced-order battery models and adaptive extended Kalman filter estimators are shown to be highly effective, accurate predictors of SOC. A battery model parameterisation framework is proposed, which enhances standardised methods to capture hysteresis effects. The hysteretic model is parameterised for three independent NMC811 lithium-ion cells and is shown to reduce voltage RMS error by 50% across 18 h automotive drive-cycles. Parameterised models are used alongside an extended Kalman filter, which demonstrates the value of adaptive filter parameterisation schemes. When used alongside an extended Kalman filter, adaptive covariance matrices yield highly accurate SOC estimates, reducing SOC estimation error by 85%, compared to the industry standard battery model.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3