Metabolomic analysis of skeletal muscle before and after strenuous exercise to fatigue

Author:

Ohmura Hajime,Mukai Kazutaka,Takahashi Yuji,Takahashi Toshiyuki

Abstract

AbstractThoroughbreds have high maximal oxygen consumption and show hypoxemia and hypercapnia during intense exercise, suggesting that the peripheral environment in skeletal muscle may be severe. Changes in metabolites following extreme alterations in the muscle environment in horses after exercise may provide useful evidence. We compared the muscle metabolites before and after supramaximal exercise to fatigue in horses. Six well-trained horses ran until exhaustion in incremental exercise tests. Biopsy samples were obtained from the gluteus medius muscle before and immediately after exercise for capillary electrophoresis–mass spectrometry analysis. In the incremental exercise test, the total running time and speed of the last step were 10.4 ± 1.3 (mean ± standard deviation) min and 12.7 ± 0.5 m/s, respectively. Of 73 metabolites, 18 and 11 were significantly increased and decreased after exercise, respectively. The heat map of the hierarchical cluster analysis of muscle metabolites showed that changes in metabolites were clearly distinguishable before and after exercise. Strenuous exercise increased many metabolites in the glycolytic pathway and the tricarboxylic acid cycle in skeletal muscle. Targeted metabolomic analysis of skeletal muscle may clarify the intramuscular environment caused by exercise and explain the response of working muscles to strenuous exercise that induces hypoxemia and hypercapnia in Thoroughbred horses.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3