Abstract
AbstractThe metro is one of the more representative urban transportation systems of Mexico City, and it transports approximately 4.5 million commuters every day. Large crowds promote the exchange of microbes between humans. In this study, we determined the bacterial diversity profile of the Mexico City metro by massive sequencing of the 16S rRNA gene. We identified a total of 50,174 operational taxonomic units (OTUs) and 1058 genera. The metro microbiome was dominated by the phylum Actinobacteria and by the genera Cutibacterium (15%) (C. acnes 13%), Corynebacterium (13%), Streptococcus (9%), and Staphylococcus (5%) (S. epidermidis; 4%), reflecting the microbe composition of healthy human skin. The metro likely microbial sources were skin, dust, saliva, and vaginal, with no fecal contribution detected. A total of 420 bacterial genera were universal to the twelve metro lines tested, and those genera contributed to 99.10% of the abundance. The annual 1.6 billion ridership makes this public transport a main hub for microbe-host-environment interactions. Finally, this study shows that the microbial composition of the Mexico City metro comes from a mixture of environmental and human sources and that commuters are exposed to healthy composition of the human microbiota.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. International Association of Public Transport. World Metro Figures 2018, http://www.uitp.org/world-metro-figures-2018 (2018).
2. Casado Izquierdo, J. M. Patrones horarios de la movilidad cotidiana en la Zona Metropolitana del Valle de México. Scr. Nova. Rev. Electrónica Geogr. y Ciencias Soc. 18, 487 (2014).
3. Walker, A. R., Grimes, T. L., Datta, S. & Datta, S. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles. Biol. Direct 13, 1–16 (2018).
4. Hsu, T. et al. Urban transit system microbial communities differ by surface type and interaction with humans and the environment. mSystems 1, 1–18 (2016).
5. Afshinnekoo, E. et al. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst. 1, 72–87 (2015).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献