Machine learning modeling of predictive external corrosion rates of spent nuclear fuel carbon steel canister in soil

Author:

Nguyen Thuy Chung,So Yoon-Sik,Yoo Jin-Soek,Kim Jung-Gu

Abstract

AbstractSoil corrosion is always a critical concern to corrosion engineering because of the economic influence of soil infrastructures as has been and has recently been the focus of spent nuclear fuel canisters. Besides corrosion protection, the corrosion prediction of the canister is also important. Advanced knowledge of the corrosion rate of spent nuclear fuel canister material in a particular environment can be extremely helpful in choosing the best protection method. Applying machine learning (ML) to corrosion rate prediction solves all the challenges because of the number of variables affecting soil corrosion. In this study, several algorithms of ML, including series individual, boosting, bagging artificial neural network (ANN), series individual, boosting, bagging Chi-squared automatic interaction detection (CHAID) tree decision, linear regression (LR) and an ensemble learning (EL) merge the best option that collects from 3 algorithm methods above. From the performance of each model to find the model with the highest accuracy is the ensemble stacking method. Mean absolute error performance matrices are shown in Fig. 15. Besides applying ML, the significance of the input variables was also determined through sensitivity analysis using the feature importance criterion, and the carbon steel corrosion rate is the most sensitive to temperature and chloride.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3