Spectroscopic investigations to reveal synergy between polystyrene waste and paraffin wax in super-hydrophobic sand

Author:

Al-Mokhalelati K.,Karabet F.,Allaf A. W.,Naddaf M.,Al Lafi A. G.

Abstract

AbstractSand based superhydrophobic materials, such as paraffin-coated sand, are the focus of global research to fight land desertification. The present work investigates the development of paraffin-coated sand with extending service life as well as improving and stabilizing hydrophobic property by adding plastic waste. While the addition of polyethylene (PE) did not improve the hydrophobic property of paraffin coated sand, incorporating 4.5% of polystyrene (PS) in the composition of coated sand increased the contact angle. Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction patterns (XRD) and two-dimensional correlation spectroscopy (2D-COS) indicated that PS increased the molecular orientation of sand and reduced the thickness of the paraffin coating. Paraffin on the other hand improved the distribution of PS and prevented aggregation with sand. Both FTIR bands at 1085 cm−1 and 462 cm−1 were more sensitive to change in PS contents, while other bands at 780 cm−1 and 798 cm−1 were more sensitive to change in paraffin contents. Moreover, the XRD patterns of sand were split into two components by the addition of PS indicating the transformation of morphology to less ordered or more distorted form. 2D-COS is a powerful tool to reveal harmony of components in mixtures, extract information related to the role of each of them, and help in decision-making process regarding choosing the appropriate recipes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3