Fracture-matrix fluid exchange in oil-bearing unconventional mudstones

Author:

Moore Johnathan,Crandall DustinORCID,Sanguinito Sean,Valenza John J.ORCID

Abstract

AbstractThe poromechanical properties of unconventional reservoir materials are in large part dictated by their mineralogy. Since these properties govern the response to stress experienced during hydraulic fracturing, fluid production, and fluid injection, they play a central role in the formation of microcracks or bedding delaminations which ultimately dominate mass transport. In this work we study access to the porosity of end member unconventional reservoir materials, where the end members are predominantly dictated by carbonate content. Access to the porosity is quantified using state of the art 3D x-ray computed tomography coupled with physics informed data analytics. Xenon gas, which attenuates x-rays, provides a spatiotemporal map of access to the porosity. The accessible porosity is quantified over a range of net confining stress relevant to the manmade disturbances listed above. These experiments demonstrate that heavily carbonated mudstones are nearly impermeable at the core (~ cm) scale, while carbonate free analogues afford better access to the microstructure. Consistent with previous qualitative 2D radiographs, access to the interior of the clastic mudstones is first observed along planar microcracks, followed by slow penetration into the surrounding matrix. Physics informed data analytics of the 3D tomography measurements presented here show that these microcracks do not permit uniform access to the adjacent rock matrix. In addition, variation of the effective pressure elucidates the mechanisms that govern fracture/matrix fluid exchange. Under conditions consistent with hydrocarbon production fluid accumulates in the immediate vicinity of the nearest microcrack. While there is clear evidence that, as intended, part of this accumulation is from the more distant matrix, fluid is also squeezed out of the microcrack. The fluid build-up at the microcrack indicates that migration out of the rock is hindered by the coupled poroelastic response of the microcrack and adjacent rock matrix. We show that these mechanisms ultimately account for the meager oil recovery factors realized in practice. These insights have implications for making reservoir scale predictions based on core scale observations, and provide a basis for devising new asset development techniques to access more porosity, and enhance fluid extraction. Finally, these findings shed light on key features and mechanisms that govern shale storage capacity, with relevance to other important industrial processes, such as geologic CO2 storage.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3