Author:
Vincent Immanuel,Lee Eun-Chong,Kim Hyung-Man
Abstract
AbstractAnion exchange membrane (AEM) electrolysis is a promising solution for large-scale hydrogen production from renewable energy resources. However, the performance of AEM electrolysis is still lower than what can be achieved with conventional technologies. The performance of AEM electrolysis is limited by integral components of the membrane electrode assembly and the reaction kinetics, which can be measured by ohmic and charge transfer resistances. We here investigate and then quantify the contributions of the ohmic and charge transfer resistances, and the rate-determining steps, involved in AEM electrolysis by using electrochemical impedance spectroscopy analysis. The factors that have an effect on the performance, such as voltage, flow rate, temperature and concentration, were studied at 1.5 and 1.9 V. Increased voltage, flow rate, temperature and concentration of the electrolyte strongly enhanced the anodic activity. We observed that here the anodic reaction offered a greater contribution to the overpotential than the cathode did.
Funder
National Research Foundation
Publisher
Springer Science and Business Media LLC
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献