Spectrum feature extraction method combining Allan variance, VMD, and PSD

Author:

Liu Xu,Wang Jian,Liu Fei,Hancock Craig

Abstract

AbstractSpectrum feature extraction plays a crucial role in identifying seismic events and calculating structural response parameters. However, the criteria for identifying effective modal components in Variational Mode Decomposition (VMD) are not well-defined, resulting in inaccurate spectrum feature extraction. To address this issue, we propose a novel spectrum feature extraction method that combines Allan variance, VMD, and power spectral density (PSD). Firstly, VMD is applied to filter noise components from triaxial accelerometer observations and add effective signals. Secondly, PSD is utilized to extract three groups of seismic frequencies (tri-axial accelerometers). Finally, the Allan method is introduced to identify the group of accelerometer observations with the highest reliability as the vibration frequency caused by the seismic excitation. We validate the effectiveness of our method by analyzing a Mw 2.6 micro-seismic event that occurred in Huairou, Beijing in 2022. The result shows that our proposed method accurately extracts spectrum features of the Great Wall. Specifically, the seismic excitation vibration frequencies at four monitoring stations were found to be 26.95 Hz, 12.89 Hz, 12.89 Hz, and 12.5 Hz. These findings underscore our method's utility in evaluating the Great Wall's structural response to seismic loading, which has significant implications for the conservation and protection of heritage structures.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3