Ce(ΙΙΙ) and La(ΙΙΙ) ions adsorption through Amberlite XAD-7 resin impregnated via CYANEX-272 extractant

Author:

Yarahmadi Azadeh,Khani Mohammad Hassan,Nasiri Zarandi Masoud,amini Younes

Abstract

AbstractThe goal of this paper is to investigate the ability of Amberlite XAD-7 (AXAD-7) resin impregnated with CYANEX-272 (di-2,4,4-trimethylpentyl phosphonic acid) to remove cerium (Ce(ΙΙΙ)) and lanthanum (La(ΙΙΙ)) ions from aqueous solutions in the batch scheme. The prepared adsorbent material was determined utilizing FTIR, SEM–EDX, and BET methods. The impact of three individual process variable factors involving feed solution pH (2–6), adsorbent dose (0.05–0.65), and process temperature (15–55 °C) on the simultaneous removal of Ce(ΙΙΙ) and La(ΙΙΙ) ions was evaluated via response surface methodology (RSM) according to the central composite design (CCD). The modeling of Ce(ΙΙΙ) and La(ΙΙΙ) ions adsorption was performed using the quadratic model and was evaluated using a coefficient of determination for both ions. The optimization data revealed that the adsorption amount of Ce(ΙΙΙ) and La(ΙΙΙ) ions removal under optimal conditions were 99.75% and 69.98%, respectively. Equilibrium and kinetic investigations were also conducted to define the removal performance of the calculated adsorbent for Ce(ΙΙΙ) and La(ΙΙΙ) ions removal. Various isotherms models such as Langmuir, Freundlich, Temkin, and Sips were examined at 25 °C to analyze the equilibrium isotherm data. The data revealed that the Sips approach is compatible with the experimental data. The highest adsorption capacity of the resin for Ce(ΙΙΙ) and La(ΙΙΙ) ions were 11.873 mg g−1 and 7.324 mg g−1, correspondingly. The kinetic study of the Ce(ΙΙΙ) and La(ΙΙΙ) adsorption process was conducted via pseudo-first-order, pseudo-second-order, and intraparticle diffusion models(IDMs). Based on the data obtained, kinetic data were fitted well to a pseudo-second-order rate correlation. According to the obtained results, the (AXAD-7) resin impregnated with CYANEX-272 performed well in removing both Ce(ΙΙΙ) and La(ΙΙΙ) ions from aqueous solutions with well stability during several adsorption–desorption cycles and well regeneration and excellent metallic ions recovery.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3