Composed query image retrieval based on triangle area triple loss function and combining CNN with transformer

Author:

Zhang Zhiwei,Wang Liejun,Cheng Shuli

Abstract

AbstractThe existing typical combined query image retrieval methods adopt Euclidean distance as sample distance measurement method, and the model trained by triple loss function blindly pursues absolute distance between samples, resulting in unsatisfactory image retrieval performance. Meanwhile, these methods singularly adopt Convolutional Neural Network (CNN) to extract reference image features. However, receptive field of convolution operation has the characteristics of locality, which is easy to cause the loss of edge feature information of reference images. In view of shortcomings of these methods, the following improvements are proposed in this paper: (1) We propose Triangle Area Triple Loss Function (TATLF), which adopts Triangle Area (TA) as measurement of sample distance. TA comprehensively considers the absolute distance and included angle between samples, so that the trained model has better retrieval performance; (2) We combine CNN with Transformer to simultaneously extract local and edge features of reference images, which can effectively reduce the loss of reference images information. Specifically, CNN is adopted to extract local feature information of reference images. Transformer is used to pay attention to the edge feature information of reference images. Extensive experiments on two public datasets, Fashion200k and MIT-States, confirm the excellent performance of our proposed method.

Funder

the National Science Foundation of China

Open project of Key Laboratory in Xinjiang Uygur Autonomous Region of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3