Assessing the impacts of dam/weir operation on streamflow predictions using LSTM across South Korea

Author:

Kwon Yongsung,Cha YoonKyung,Park Yeonjeong,Lee Sangchul

Abstract

AbstractRecently, weather data have been applied to one of deep learning techniques known as “long short-term memory (LSTM)” to predict streamflow in rainfall-runoff relationships. However, this approach may not be suitable for regions with artificial water management structures such as dams and weirs. Therefore, this study aims to evaluate the prediction accuracy of LSTM for streamflow depending on the availability of dam/weir operational data across South Korea. Four scenarios were prepared for 25 streamflow stations. Scenarios #1 and #2 used weather data and weather and dam/weir operational data, respectively, with the same LSTM model conditions for all stations. Scenarios #3 and #4 used weather data and weather and dam/weir operational data, respectively, with the different LSTM models for individual stations. The Nash–Sutcliffe efficiency (NSE) and the root mean squared error (RMSE) were adopted to assess the LSTM’s performance. The results indicated that the mean values of NSE and RMSE were 0.277 and 292.6 (Scenario #1), 0.482 and 214.3 (Scenario #2), 0.410 and 260.7 (Scenario #3), and 0.592 and 181.1 (Scenario #4), respectively. Overall, the model performance was improved by the addition of dam/weir operational data, with an increase in NSE values of 0.182–0.206 and a decrease in RMSE values of 78.2–79.6. Surprisingly, the degree of performance improvement varied according to the operational characteristics of the dam/weir, and the performance tended to increase when the dam/weir with high frequency and great amount of water discharge was included. Our findings showed that the overall LSTM prediction of streamflow was improved by the inclusion of dam/weir operational data. When using dam/weir operational data to predict streamflow using LSTM, understanding of their operational characteristics is important to obtain reliable streamflow predictions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3