Blocking MyD88 signaling with MyD88 inhibitor prevents colitis-associated colorectal cancer development by maintaining colonic microbiota homeostasis

Author:

Xie Bin,Wang Bo,Shang Runshi,Wang Lu,Huang Xia,Xie Lin

Abstract

AbstractCertain intestinal microbiota alterations appear to positively correlate with tumorigenesis of CAC due to the disruption of the balance between the host and microorganisms. It is proven that blocking MyD88 signaling can prevent colitis-associated colorectal cancer (CAC) development in mice. We are aim to reveal the role of MyD88 signaling of maintaining colonic microbiota homeostasis for preventing CAC development. We here analyzed the landscape of gut microbiome in the mice model of AOM/DSS-induced CAC with MyD88 inhibitor treatment. PCoA revealed significant reduction in Lactobacillus load and increase in Escherichia load in the mucosal microbial composition of mice with CAC, compared with normal controls (NCs). Inhibitor-treatment led to almost undetectable Proteobacteria (Escherichia) and the retention of the dominance of Firmicutes and Bacteroidota (Muribaculaceae) in the mucosa. RNA sequencing analysis identified genes were up-regulated (Hp, SAA3 and IL-1F9) and down-regulated (CYP3A44, SLC30A10, GPNMB and OTC) in Inhibitor-treated mice (vs. CAC). Meanwhile, Inhibitor-treated mice had higher percentage of MUC2-positive area in colon sections (vs. CAC, which was less than NCs) by IF staining and decreased Escherichia in the mucus layer (vs. CAC) by FISH. And intestinal microbiota from mice with MyD88 inhibitor treatment could lessen the outcome of CAC by fecal microbiota transplantation. The development of CAC was involved in the increasing and ectopic Escherichia in the decreasing colonic mucus layer. MyD88 signaling blockade may maintain the host-microbiota homeostasis by up-regulating MUC2 production, increasing probiotics and their protective effects, and inhibiting the reproduction of Escherichia.

Funder

the Hubei Provincial Natural Science Foundation of China

the Hubei Province health and family planning scientific research project

Open Project of the Key Laboratory of Organ Transplantation, Ministry of Education, and NHC

National Natural Science Foundations for Young Scientists of China

National Natural Science Foundations of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3