Root biomass and cumulative yield increase with mowing height in Festuca pratensis irrespective of Epichloë symbiosis

Author:

Laihonen Miika,Rainio Kalle,Birge Traci,Saikkonen Kari,Helander Marjo,Fuchs Benjamin

Abstract

AbstractIncreasing agricultural soil carbon sequestration without compromising the productivity of the land is a key challenge in global climate change mitigation. The carbon mitigation potential of grass-based agriculture is particularly high because grasslands represent 70% of the world’s agricultural area. The root systems of grasses transfer large amounts of carbon to below-ground storage, and the carbon allocation to the roots is dependent on the grasses’ photosynthesizing shoot biomass. In a common-garden experiment, Festuca pratensis was used as a model species to study how mowing and weed control practices of perennial cool-season fodder grasses affect total yield and root biomass. Additionally, grass-associated Epichloë endophytes and soil residual glyphosate were tested for their effect on the total yield and root biomass alone or in interaction with mowing. The results demonstrate that elevating the cutting height increases both cumulative yield and root biomass in F. pratensis. Endophyte symbiosis increased the total yield, while glyphosate-based herbicide residues in the soil decreased the root biomass, which indicates a reduction of soil bound carbon sequestration. The findings demonstrate that carbon sequestration and yield quantities on farmed grasslands may significantly be improved by optimizing strategies for the use of plant protection products and adjustment of mowing intensity.

Funder

Academy of Finland

Suomen Kulttuurirahasto

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3