Metal chelating and anti-radical activity of Salvia officinalis in the ameliorative effects against uranium toxicity

Author:

Aydin Deniz,Yalçin Emine,Çavuşoğlu Kültiğin

Abstract

AbstractUranium is a highly radioactive heavy metal that is toxic to living things. In this study, physiological, cytogenetic, biochemical and anatomical toxicity caused by uranium and the protective role of sage (Salvia officinalis L.) leaf extract against this toxicity were investigated with the help of Allium test. Germination percentage, root length, weight gain, mitotic index (MI), micronucleus (MN) formation, chromosomal aberrations (CAs), superoxide dismutase (SOD) and catalase (CAT) enzyme activities, malondialdehyde (MDA) levels and changes in root meristem cells were used as indicators of toxicity. In the experimental stage, a total of six groups, one of which was the control, were formed. Group I was treated with tap water, while group II and III were treated only with sage (190 mg/L and 380 mg/L). Groups IV, V and VI were germinated with uranyl acetate dihydrate (0.1 mg/mL), uranyl acetate dihydrate + 190 mg/L sage and uranyl acetate dihydrate + 380 mg/L sage, respectively. Allium cepa L. bulbs of each group were germinated for 72 h, and at the end of the period, routine preparation techniques were applied and physiological, cytogenetic, biochemical and anatomical analyzes were performed. As a result, uranium application caused a significant decrease (p < 0.05) in all physiological parameters and MI values. MN, CAs numbers, SOD and CAT enzyme activities and MDA levels increased significantly (p < 0.05) with uranium application. Uranium promoted CAs in the root tip cells in the form of fragment, vagrant chromosome, sticky chromosome, bridge and unequal distribution of chromatin. In addition, it caused anatomical damages such as epidermis cell damage, cortex cell damage and flattened cell nucleus in root tip meristem cells. Sage application together with uranium caused significant (p < 0.05) increases in physiological parameters and MI values and significant decreases in MN, CAs, SOD and CAT activities and MDA levels. In addition, the application of sage resulted in improvement in the severity of anatomical damages induced by uranium. It was determined that the protective role of sage observed for all parameters investigated was even more pronounced at dose of 380 mg/L. The protective role of sage against uranium toxicity is related to its antioxidant activity, and sage has 82.8% metal chelating and 72.9% DPPH removal activity. As a result, uranyl acetate exhibited versatile toxicity in A. cepa, caused cytotoxicity by decreasing the MI rate, and genotoxicity by increasing the frequencies of MN and CAs. And also, Sage acted as a toxicity-reducing agent by displaying a dose-dependent protective role against the toxic effects induced by uranyl acetate.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference47 articles.

1. Duruibe, J. O., Ogwuegbu, M. O. C. & Egwurugwu, J. N. Heavy metal pollution and human biotoxic effects. Int. J. Physic. Sci. 2(5), 112–118 (2007).

2. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. Heavy metals toxicity and the environment. EXS 101, 133–164 (2012).

3. Jan, A. T. et al. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16(12), 29592–29630 (2015).

4. Bhat, S. A., Hassan, T. & Majid, S. Heavy metal toxicity and their harmful effects on living organisms—a review. IJMSDR. 3(1), 106–122 (2019).

5. Shah, F. U. R., Ahmad, N., Masood, K. R. & Peralta-Videa, J. R. Heavy metal toxicity in plants in Plant adaptation and phytoremediation 71–97 (Springer, 2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3