Author:
Kato Junpei,Yamada Toru,Kawaguchi Hiroshi,Matsuda Keiji,Higo Noriyuki
Abstract
AbstractBecause compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献