Immune, metabolic landscapes of prognostic signatures for lung adenocarcinoma based on a novel deep learning framework

Author:

Qin Shimei,Sun Shibin,Wang Yahui,Li Chao,Fu Lei,Wu Ming,Yan Jinxing,Li Wan,Lv Junjie,Chen Lina

Abstract

AbstractLung adenocarcinoma (LUAD) is a malignant tumor with high lethality, and the aim of this study was to identify promising biomarkers for LUAD. Using the TCGA-LUAD dataset as a discovery cohort, a novel joint framework VAEjMLP based on variational autoencoder (VAE) and multilayer perceptron (MLP) was proposed. And the Shapley Additive Explanations (SHAP) method was introduced to evaluate the contribution of feature genes to the classification decision, which helped us to develop a biologically meaningful biomarker potential scoring algorithm. Nineteen potential biomarkers for LUAD were identified, which were involved in the regulation of immune and metabolic functions in LUAD. A prognostic risk model for LUAD was constructed by the biomarkers HLA-DRB1, SCGB1A1, and HLA-DRB5 screened by Cox regression analysis, dividing the patients into high-risk and low-risk groups. The prognostic risk model was validated with external datasets. The low-risk group was characterized by enrichment of immune pathways and higher immune infiltration compared to the high-risk group. While, the high-risk group was accompanied by an increase in metabolic pathway activity. There were significant differences between the high- and low-risk groups in metabolic reprogramming of aerobic glycolysis, amino acids, and lipids, as well as in angiogenic activity, epithelial-mesenchymal transition, tumorigenic cytokines, and inflammatory response. Furthermore, high-risk patients were more sensitive to Afatinib, Gefitinib, and Gemcitabine as predicted by the pRRophetic algorithm. This study provides prognostic signatures capable of revealing the immune and metabolic landscapes for LUAD, and may shed light on the identification of other cancer biomarkers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Heilongjiang Postdoctoral Funds for Scientific Research Initiation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3