Imaging evolution of Cascadia slow-slip event using high-rate GPS

Author:

Itoh YujiORCID,Aoki YosukeORCID,Fukuda JunichiORCID

Abstract

AbstractThe slip history of short-term slow slip event (SSE) is typically inferred from daily Global Positioning System (GPS) data, which, however, cannot image the sub-daily processes, leaving the underlying mechanisms of SSEs elusive. To address the temporal resolution issue, we attempted to employ the kinematic subdaily GPS analysis, which has never been applied to SSE studies because its signal-to-noise ratio has been believed too low. By carefully post-processing sub-daily positions to remove non-tectonic position fluctuation, our 30-min kinematic data clearly exhibits the transient motion of a few mm during one Cascadia SSE. A spatiotemporal slip image by inverting the 30-min data exhibits a multi-stage evolution; it consists of an isotropic growth of SSE followed by an along-strike migration and termination within the rheologically controlled down-dip width. This transition at the slip growth mode is similar to the rupture growth of regular earthquakes, implying the presence of common mechanical factors behind the two distinct slip phenomena. The comparison with a slip inversion of the daily GPS demonstrates the current performance and limitation of the subdaily data in the SSE detection and imaging. Better understanding of the non-tectonic noise in the kinematic GPS analysis will further improve the temporal resolution of SSE.

Funder

Japan Society for the Promotion of Science

Earthquake Research Institute, the University of Tokyo

The Geodetic Society of Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3