Author:
Sojan Jerry Maria,Gioacchini Giorgia,Giorgini Elisabetta,Orlando Patrick,Tiano Luca,Maradonna Francesca,Carnevali Oliana
Abstract
AbstractProbiotics are live microorganisms that confer several beneficial effects to the host, including enhancement of bone mineralization. However, probiotic action on bone regeneration is not well studied and therefore we analysed various effects of probiotic treatment on the caudal fin regeneration of zebrafish. Morphological analysis revealed an increased regenerated area with shorter and thicker lepidotrichia segments after probiotic treatment. Fourier transform infrared spectroscopy imaging analysis highlighted the distribution of phosphate groups in the regenerated fins and probiotic group showed higher amounts of well-crystallized hydroxyapatite. At the midpoint (5 days post amputation) of regeneration, probiotics were able to modulate various stages of osteoblast differentiation as confirmed by the upregulation of some key marker genes such as runx2b, sp7, col10a1a, spp1 and bglap, besides suppressing osteoclast activity as evidenced from the downregulation of ctsk. Probiotics also caused an enhanced cell cycle by regulating the expression of genes involved in Retinoic acid (rarga, cyp26b1) and Wnt/β-catenin (ctnnb1, ccnd1, axin2, sost) signaling pathways, and also modulated phosphate homeostasis by increasing the entpd5a levels. These findings provide new outlooks for the use of probiotics as a prophylactic treatment in accelerating bone regeneration and improving skeletal health in both aquaculture and biomedical fields.
Funder
Horizon 2020 research and innovation programme
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. McCabe, L. R., Irwin, R., Schaefer, L. & Britton, R. A. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J. Cell Biol. 228, 1793–1798 (2013).
2. Messora, M. R. et al. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis. J. Periodontol. 84, 1818–1826 (2013).
3. Abdelqader, A., Irshaid, R. & Al-Fataftah, A.-R. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop. Anim. Health. Prod. 45, 1017–1024 (2013).
4. Avella, M. A. et al. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS ONE 7, e45572 (2012).
5. Maradonna, F. et al. Probiotic supplementation promotes calcification in Danio rerio Larvae: A molecular study. PLoS ONE 8, e83155 (2013).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献