Computing all persistent subspaces of a reaction-diffusion system

Author:

Peter Stephan,Woitke Linus,Dittrich Peter,Ibrahim Bashar

Abstract

AbstractAn algorithm is presented for computing a reaction-diffusion partial differential equation (PDE) system for all possible subspaces that can hold a persistent solution of the equation. For this, all possible sub-networks of the underlying reaction network that are distributed organizations (DOs) are identified. Recently it has been shown that a persistent subspace must be a DO. The algorithm computes the hierarchy of DOs starting from the largest by a linear programming approach using integer cuts. The underlying constraints use elementary reaction closures as minimal building blocks to guarantee local closedness and global self-maintenance, required for a DO. Additionally, the algorithm delivers for each subspace an affiliated set of organizational reactions and minimal compartmentalization that is necessary for this subspace to persist. It is proved that all sets of organizational reactions of a reaction network, as already DOs, form a lattice. This lattice contains all potentially persistent sets of reactions of all constrained solutions of reaction-diffusion PDEs. This provides a hierarchical structure of all persistent subspaces with regard to the species and also to the reactions of the reaction-diffusion PDE system. Here, the algorithm is described and the corresponding Python source code is provided. Furthermore, an analysis of its run time is performed and all models from the BioModels database as well as further examples are examined. Apart from the practical implications of the algorithm the results also give insights into the complexity of solving reaction-diffusion PDEs.

Funder

GUST Seed Grant

Friedrich-Schiller-Universität Jena

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3