Predicting the quality of soybean seeds stored in different environments and packaging using machine learning

Author:

da Silva André Geovane,Coradi Paulo Carteri,Teodoro Larissa Pereira Ribeiro,Teodoro Paulo Eduardo

Abstract

AbstractThe monitoring and evaluating the physical and physiological quality of seeds throughout storage requires technical and financial resources and is subject to sampling and laboratory errors. Therefore, machine learning (ML) techniques could help optimize the processes and obtain accurate results for decision-making in the seed storage process. This study aimed to analyze the performance of ML algorithms from variables monitored during seed conditioning (temperature and packaging) and storage time to predict the physical and physiological quality of stored soybean seeds. Data analysis was performed using the Artificial Neural Networks, decision tree algorithms REPTree and M5P, Random Forest, and Linear Regression. In predicting seed quality, the combination of the input variables temperature and storage time for REPTree and Random Forest algorithms outperformed the linear regression, providing higher accuracy indices. Among the most important results, it was observed for apparent specific mass that T + P + ST, T + ST, P + ST, and ST had the highest r means and the lowest MAE means, however, Person's r coefficient for these inputs was 0.63 and the MAE between 9.59 to 10.47. The germination results for inputs T + P + ST and T + ST had the best results (r = 0.65 and r = 0.67, respectively) in the ANN, REPTree, M5P and RF models. Using computational intelligence algorithms is an excellent alternative to predict the quality of soybean seeds from the information of easy-to-measure variables.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3