Author:
Maruta Emiko,Kubota Mitsumasa,Ikeda Takefumi
Abstract
AbstractAt high elevations, winter climatic conditions frequently cause excessive drought stress, which can induce embolism in conifer trees. We investigated the formation and repair of winter embolism in subalpine fir (Abies veitchii) growing near the timberline. We found a complete loss in xylem conductivity [100% percent loss of conductivity (PLC)] at the wind-exposed site (W+) and 40% PLC at the wind-protected site (W−). A PLC of 100% was far above the embolism rate expected from the drought-induced vulnerability analysis in the laboratory. At the W+ site, a PLC of 100% was maintained until May; this suddenly decreased to a negligible value in June, whereas the recovery at the W− site started in late winter and proceeded stepwise. The contrast between the two sites may have occurred because of the different underlying mechanisms of winter embolism. If most tracheids in the xylem of 100% PLC are air-filled, it will be difficult to refill quickly. However, embolism caused by pit aspiration could be restored rapidly, because aspirated pits isolate tracheids from each other and prevent the spread of cavitation. Although severe embolism may cause frost damage of needles, it may have a role in holding water within the stem.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献