Author:
Yamazaki Emiko,Yazawa Shunsuke,Shimada Takahisa,Tamura Kosuke,Saga Yumiko,Itamochi Masae,Inasaki Noriko,Hasegawa Sumiyo,Morinaga Yoshitomo,Oishi Kazunori,Tani Hideki
Abstract
AbstractSARS-CoV-2 enters host cells through the angiotensin converting enzyme 2 (ACE2) receptor and/or transmembrane protease, serine 2 (TMPRSS2). In this study, we investigated whether proteases increased SARS-CoV-2 infectivity using pseudotyped viruses and clinical specimens from patients with COVID-19. First, we investigated how trypsin increased infectivity using the pseudotyped virus. Our findings revealed that trypsin increased infectivity after the virus was adsorbed on the cells, but no increase in infectivity was observed when the virus was treated with trypsin. We examined the effect of trypsin on SARS-CoV-2 infection in clinical specimens and found that the infectivity of the SARS-CoV-2 delta variant increased 36,000-fold after trypsin treatment. By contrast, the infectivity of SARS-CoV-2 omicron variant increased to less than 20-fold in the clinical specimens. Finally, using five clinical specimens containing delta variants, enhancement of viral infectivity was evaluated in the presence of the culture supernatant of several anaerobic bacteria. As a result, viral infectivities of all the clinical specimens containing culture supernatants of Fusobacterium necrophorum were significantly increased from several- to tenfold. Because SARS-CoV-2 infectivity increases in the oral cavity, which may contain anaerobic bacteria, keeping the oral cavities clean may help prevent SARS-CoV-2 infection.
Funder
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. WHO. Coronavirus (COVID-19) Dashboard. Accessed 28 June 2023.
2. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280. https://doi.org/10.1016/j.cell.2020.02.052 (2020).
3. Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 117, 7001–7003. https://doi.org/10.1073/pnas.2002589117 (2020).
4. Kido, H., Murakami, M., Oba, K., Chen, Y. & Towatari, T. Cellular proteinases trigger the infectivity of the influenza A and Sendai viruses. Mol. Cells 9, 235–244 (1999).
5. Tashiro, M., Ciborowski, P., Klenk, H. D., Pulverer, G. & Rott, R. Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325, 536–537. https://doi.org/10.1038/325536a0 (1987).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献