Author:
Boneh-Shitrit Tali,Feighelstein Marcelo,Bremhorst Annika,Amir Shir,Distelfeld Tomer,Dassa Yaniv,Yaroshetsky Sharon,Riemer Stefanie,Shimshoni Ilan,Mills Daniel S.,Zamansky Anna
Abstract
AbstractIn animal research, automation of affective states recognition has so far mainly addressed pain in a few species. Emotional states remain uncharted territories, especially in dogs, due to the complexity of their facial morphology and expressions. This study contributes to fill this gap in two aspects. First, it is the first to address dog emotional states using a dataset obtained in a controlled experimental setting, including videos from (n = 29) Labrador Retrievers assumed to be in two experimentally induced emotional states: negative (frustration) and positive (anticipation). The dogs’ facial expressions were measured using the Dogs Facial Action Coding System (DogFACS). Two different approaches are compared in relation to our aim: (1) a DogFACS-based approach with a two-step pipeline consisting of (i) a DogFACS variable detector and (ii) a positive/negative state Decision Tree classifier; (2) An approach using deep learning techniques with no intermediate representation. The approaches reach accuracy of above 71% and 89%, respectively, with the deep learning approach performing better. Secondly, this study is also the first to study explainability of AI models in the context of emotion in animals. The DogFACS-based approach provides decision trees, that is a mathematical representation which reflects previous findings by human experts in relation to certain facial expressions (DogFACS variables) being correlates of specific emotional states. The deep learning approach offers a different, visual form of explainability in the form of heatmaps reflecting regions of focus of the network’s attention, which in some cases show focus clearly related to the nature of particular DogFACS variables. These heatmaps may hold the key to novel insights on the sensitivity of the network to nuanced pixel patterns reflecting information invisible to the human eye.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Darwin, C. The Expression of Emotions in Animals and Man Vol. 11, 1872 (Murray, 1872).
2. Ekman, P. & Friesen, W. V. Measuring facial movement. Environ. Psychol. Nonverbal Behav. 1, 56–75 (1976).
3. Ekman, P. & Keltner, D. Universal facial expressions of emotion. In Nonverbal Communication: Where nature meets culture (eds Segerstrale U. P. & Molnar, P.) vol. 27, 46 (1997).
4. Russell, J. A., Bachorowski, J.-A. & Fernández-Dols, J.-M. Facial and vocal expressions of emotion. Ann. Rev. Psychol. 54, 329–349 (2003).
5. Diogo, R., Abdala, V., Lonergan, N. & Wood, B. From fish to modern humans-comparative anatomy, homologies and evolution of the head and neck musculature. J. Anat. 213, 391–424 (2008).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献